

原子结构

原子结构答案

一、选择填空

1-5: D C C D C 6-10: C A A A C 11-15: C B A C D

二、填空

- 1. $5s^25p^5$ 五 VIIA 否 2. 2 1

- 3. 2 4. 2 5. 5 6. 波函数 ψ 7. 0 +1 +2 -1 -

2

- 8. 4 <u>4s 4p 4d 4f</u> 9. 18
- ABr_2 10.

三、判断是非(下列各题,在叙述正确的题前括号中划"√",否则划"×")

1-5: $\times \times \times \checkmark \checkmark$ 5-10: $\checkmark \times \checkmark \checkmark \times$

四、填表

1.

原子序数	电子排布式	价层电子构型	周期	族	X	金属或非金属
20	$1s^22s^22p^63s^23p^64s^2$	$4s^2$	四	II A	S	金属
30	$[Ar] 3d^{10}4s^2$	$3d^{10}4s^2$	四	IIΒ	ds	金属

2.

原子序数	电子排布式	价层电子构型	周期	族	X	金属或非金属
33	[Ar] $3d^{10}4s^24p^3$	$4s^24p^3$	四	VA	p	非金属
43	$[Kr] 4d^{10}5s^2$	$4d^{10}5s^2$	五.	VIIB	d	金属

3.

轨道	4f	5d	3p
n	4	5	3
1	3	2	1

分子结构

分子结构答案

一、选择填空(每题有一个或两个合适的答案,将所选答案的序号填入题前括号 内。)

1-5: C C D B B 6-10: C C D A A 11-15: A A C B D

二、填空

- 1. sp 1 个 σ , 2 个 π 2. 色散力 3. 色散力 诱导力 取向力
- 4. 强 5 . 分子间力或色散力 6. HF

- 7. 提高成键能力 8. 4 4 正四面体 9. 氢键 10. HI
- 三、判断是非(下列各题,在叙述正确的题前括号中划"√",否则划"×")

1-10: ×× √×× 6-10: √× √ √×

四、填表

1,

物质	NH ₄ ⁺	CC1 ₄	$\mathrm{BBr}_{\scriptscriptstyle 3}$	PH_3
中心原子杂化类型	sp^3	sp ³	sp^2	不等性 sp³
分子的空间构型	正四面体	正四面体	平面三角形	三角锥

2

物质	SiF ₄	C10 ₄	CO_2	H_2S
中心原子杂化类型	sp^3	sp^3	sp	不等性 sp³
分子的空间构型	正四面体	正四面体	直线形	V形
是否为极性分子	否	否	否	是

3,

物	质	价层电子对数	键对电子对数	弧对电子对数	分子空间构型
ВеС	1_2	2	2	0	直线形
S0	2	4	2	2	V形

XeF ₄	6	4	2	平面正方形
------------------	---	---	---	-------

4,

物质	空间构型	中心原子轨道杂化类型	是否具有极性
BF_4^-	正四面体	sp^3	否
SO_3	平面三角形	sp^2	否

溶液和酸碱平衡

一: 选择题

1-5: DCDCA 6-10: BDBDB 11-15: CCDBC 16-20: BCBBC

二、填空题

- 1. 溶液的蒸气压下降,沸点升高,凝固点降低,溶液的渗透压力
- 2. 8.87 3. 等渗 4. <u>1 3</u> 5. 9.56 6. 9.26

- 7. 决定细胞间液和细胞内液水的转移 调节血容量及维持血浆和组织间液
- 之间的水平衡 8. 小于 9. $K_{\rm a}$ $\frac{c_{\rm HAC}}{c_{\rm AC^-}}$ 10. $1.9*10^{-3}$ 11. 光

- 学,动力学,电学 12.0.0258
- 13. 3. 15 3. 30 3. 0 14. 64. 1 15. 9. 70 9. 40 10. 00 16. 降

- 低 增大
- 17. (1)(3)(2)(4)
- 三、判断是非题 1-5: × √ √ √ √ 6-10: ×××××

四、计算题

1. 解:根据
$$\alpha = \sqrt{\frac{K_a^{\theta}}{c}}$$
 得 $K_a^{\theta} = 4.08 \times 10^{-5}$

由
$$\alpha = \sqrt{\frac{K_a^{\theta}}{c}}$$
,得 $\alpha = 2.82\%$ $\alpha = \sqrt{\frac{K_a^{\theta}}{c}}$,得 c =0.4 mol. L⁻¹

2. 解:
$$c_{NaAC} = 0.5 \text{ mol. L}^{-1}$$
 $c_{\text{H}}^{+} = 10^{-5} \text{ mol. L}^{-1}$

根据
$$c_{H^+} = K_a \cdot \frac{c_a}{c_s}$$
 得 c_{HAC} =0. 28 mo1. L⁻¹ 0. 28*250=60* x 得 x =11. 7mL

3. 解 选 HCOOH 和 NaCOOH (选 pK。最接近的)

根据
$$c_{H^+}=K_a.\frac{c_a}{c_s}$$
,得 $\frac{c_a}{c_s}$ =5.56

$$M = \frac{m}{cV} = \frac{10.0}{0.17 \times 10^{-3} \times 1} = 5.88 \times 10^{4}$$

$$\Delta p = p^{0} x_{\rm B} = p^{0} \frac{n_{\rm B}}{m_{\rm A}} M_{\rm A} = p^{0} M_{\rm A} b_{\rm B} = K b_{\rm B}$$

$$K = p^0 M_A$$

对于异戊烷有
$$K = p^0 M_A = 77.31 \text{ kPa} \times 72.15 \text{ g} \cdot \text{mol}^{-1}$$

=5578 kPa • g • mol⁻¹ = 5.578 kPa • kg • mol⁻¹

(2)
$$\Delta p = Kb_{\rm B} = K \frac{m_{\rm B}}{M_{\rm B}m_{\rm A}}$$

$$M_{\rm B} = K \frac{m_{\rm B}}{\Delta p \cdot m_{\rm A}} = 5.578 \text{kPa} \cdot \text{kg} \cdot \text{mol}^{-1} \frac{0.0697 \text{g}}{2.32 \text{kPa} \times \frac{0.891}{1000} \text{kg}} = 188 \text{g} \cdot \text{mol}^{-1}$$

化学动力学 化学平衡

化学动力学 化学平衡答案

1 选择题 ℂ

1-5: D B B D C 6-10: C C C C B 11-15: D B C D A

2 填空题

- 1、0.016, 正向 2、70.6% 3、 $v=kc(B)^2$, 2 4、增大,减小

- 5、不变,减小,增大 6、2.9×10¹² 7、1.66

三 判断题

1-5: $\times \times \times \times \checkmark \times$ 6-10: $\checkmark \times \checkmark \times \times$

四 填表

- 1 不变,不变,增大,不变,向右
 - 减小,减小,减小,增大,向右
- 2 不变,不变,增大,不变,向右
 - 减小,减小,减小,减小,向左

五、计算题

- **1.** 75% **2.** 0.27
- 3. (1) 该反应是一级反应 (2) 氯乙烷分解一半,需 4.62h: (3) 需要 24.59h:
- 4. (1) 该反应为一级反应,则 $t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{2.2 \times 10^{-5}} = 3.15 \times 10^{4} \text{s}$

即 10.0 SO₂Cl₂分解一半需 3.15 × 10⁴ s。

(2) 2 h = 120 s, $[A]_0 = 2.0 g$

 $In[A] - In[A]_0 = -kt$ 代入数据, $In[A] - In[2] = -2.2 \times 10^{-5} \times 120$ 则[A]= 1.95 g, 即 2.00g SO₂Cl₂经 2h 之后还剩 1.95 克。

沉淀反应

沉淀反应答案

一、选择填空

1-5: AADB B 6-9: DABC

二、填空

1. $K_{sp} = c (Ca^{2+}) \cdot [c (F^{-})]^2$ $K_{sp} = c (Mg^{2+}) \cdot c (NH_4^{+}) \cdot c (PO_4^{3-})$ 2. 6. 912×10^{-9} 3.

4. 减小 增大 5. 大于 小于 6. $\emph{K}=\frac{K_{sp}(\textit{MnS})}{K_{sp}(\textit{CuS})}$

7..

加入物质	亚海孜勃士肯	AgC1 溶解	溶液中离子浓度		发生变化原因
加入初與	了 撰 <i>物切刀</i> 问	平衡移动方向		$c(C1^-)$	及主文化原因
0.1 mol • L ⁻¹ HC1	逆向	减小	减小	增大	同离子效应
$0.1 mo1 \cdot L^{-1} AgNO_3$	逆向	减小	增大	减小	同离子效应
KNO_3 (s)	正向	增大	增大	增大	盐效应
$2\text{mo1} \cdot \text{L}^{-1}\text{NH}_3 \cdot \text{H}_2\text{O}$	正向	增大	减小	增大	形成配合物
$\mathrm{H_{2}O}$	正向	不变	不变	不变	稀释

8. 小 9. 分步沉淀

三、判断是非

1. \checkmark 2. \checkmark 3. \times 4. \times 5. \times 6. \checkmark 7. \times 8. \times 9. \times 10. \times 11.

 \times 12. \times 13. 14. \times 15. \times

16. ✓

四、计算

1. \mathbf{Mg} (OH)₂ \rightleftharpoons \mathbf{Mg}^{2+} + OH⁻

2s

(1)
$$s = \sqrt[3]{\frac{K_{sp}[Mg(OH)_2]}{4}} = 1.12 \times 10^{-4} mol \cdot L^{-1}$$

(2)
$$c(Mg^{2+})=1.12\times10^{-4}mo1\cdot L^{-1}$$
 $c(OH^{-})=2.24\times10^{-4}mo1\cdot L^{-1}$

(3)
$$s(0.010+2s)^2=5.6\times10^{-12}$$
 $c(Mg^{2+})=s=5.6\times10^{-8}$ $mo1\cdot L^{-1}$

(4) (0.010+s) (2s)²=5.6×10⁻¹²
$$s = \sqrt{\frac{5.6 \times 10^{-12}}{4.0 \times 0.010}} = 1.18 \times 10^{-5} \, mol \cdot L^{-1}$$

2.
$$\mathbf{M}$$
: (1) \mathbf{c} ($\mathbf{M}\mathbf{n}^{2+}$)=1.0×10⁻³mo1·L⁻¹ \mathbf{c} ($\mathbf{N}\mathbf{H}_3\mathbf{H}_2\mathbf{0}$)=0.050mo1·L⁻¹

:
$$c/K_B > 500$$
 : $c(OH^-) = \sqrt{K_b \cdot c} = \sqrt{9.0 \times 10^{-7}} mol \cdot L^{-1}$

 \mathcal{F} c (Mn²⁺)· [c (OH)]²=1.0×10⁻³×9.0×10⁻⁷=9.0×10⁻¹⁰> K_{sp}[Mn (OH)₂],有 Mn (OH)₂↓生成。

(2)
$$c(NH_4^+) = 2 \times \frac{0.495}{132 \times 0.015} = 0.50 \text{mol} \cdot L^{-1}$$

 $c(OH^-) = 1.8 \times 10^{-5} \frac{0.050}{0.50} = 1.8 \times 10^{-6} \text{mol} \cdot L^{-1}$

J=1.0×10⁻³(1.8×10⁻⁶)²=3.24×10⁻¹⁵〈 K_{sp} [Mn(OH)₂],无 Mn(OH)₂↓生成。

3. 解: 沉淀
$$Pb^{2+}$$
的 $c(OH^{-})_{1} = \sqrt{\frac{K_{sp}[Pb(OH)_{2}]}{c(Pb^{2+})}} = 2.45 \times 10^{-7} mol \cdot L^{-1}$

沉淀
$$\operatorname{Cr}^{3+}$$
的 $c(OH^{-})_{2} = \sqrt[3]{\frac{K_{sp}[Cr(OH)_{3}]}{c(Cr^{3+})}} = 3.16 \times 10^{-10} mol \cdot L^{-1}$

∵c(OH)₁> c(OH)₂ ∴Cr(OH)₃先析出。

当 Pb (OH)₂开始析出时:
$$c(Cr^{3+}) = \frac{K_{sp}[Cr(OH)_3]}{(2.45 \times 10^{-7})^3} = 4.28 \times 10^{-11} mol \cdot L^{-1} < 10^{-5}$$

可以分离。

氧化还原答案

- 一、选择填空
- 1-5: ADA BC 6-10: AAACCB
- 二、填空
- 1、增强 2、1.57×10⁻⁸ 3、减小,不变,减小 4、C10₃⁻, NO 5、PbO₂, Sn²⁺
- 6, $K_2Cr_2O_7$, $KMnO_4$; Fe^{3+} , $C1_2$
- 7, 1
- 8、1.23V
- 9, $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$; $2C1^- 2e^- \rightarrow C1_2$; 0.15v;
- (-) Pt, $C1_2(p^{\theta}) \mid C1^-(C^{\theta}) \parallel MnO_4^-(C^{\theta})$, $Mn^{2+}(C^{\theta})$, $H^+(C^{\theta}) \mid Pt(+)$;
- 10, (-) Zn(s) | ZnNO₃(c₁) || AgNO₃(c₂) | Ag(s) (+)
- 11, -2.07V 12, 0.118v; 13, Mn^{2+}
- MnO_4^{2-}

- 三、判断是非
- 1-5: ×××× ✓ 6-10: ×××× ✓
- 四、计算题
- 1, ϕ (H⁺/H₂)=-0.14V, pH=2.36
- 2. ϕ^{θ} (PbSO₄/Pb) =-0.28 V, K_{sp}^{θ} =6.4×10⁻⁶
- 3, $\phi (Fe^{3+}/Fe^{2+}) = \phi^{\theta} (I_2/I^-) = 0.54V c(Fe^{3+}) = 1.3 \times 10^{-4} \text{mo} 1/L$;
- 4、 ϕ^{θ} (MnO₂/Mn²⁺) $< \phi^{\theta}$ (C1₂/C1⁻) 在标准态时反应不能进行,

采用浓 HC1 后, ϕ (MnO_2/Mn^{2+}) =1.36V> ϕ ($C1_2/C1$)=1.30V, 在浓盐酸中反 应能进行。

配位化合物

配合物答案

- 一、选择填空 1-5: DDCBC 6-10: CCDDC
- 二、填空
- 1、sp³d² 2、硝酸一羟基三水合锌(II) Zn²⁺ <u>OH⁻H₂O</u> 4
- 3、K[CoCl₄(NH₃)₂], 钴离子, NH₃, Cl- 6 4、配体 单齿 多齿
- 5、配体离子 配位原子 6、[Co(ONO) (NH₃)₅] SO₄
- 7、四面体: sp³ 有未成对电子 平面正方形: dsp² 无未成对电子
- 8, x=2, y=3 9, [Co(SO₄) (NH₃)₅]Br, [Co Br (NH₃)₅] SO₄
- 三、判断是非 1-5: ×√××× 6-9: ××××

四、填表

1. 己知价层电子构型: Cu: 3d104s1, Zn: 3d104s2

物质	中心离子	配离子	内轨或外轨	顺磁或
初原	杂化类型	空间构型	PJ 4/LEX/21 4/L	反磁性
[Cu(NH ₃) ₂] ⁺	sp	直线	外轨	顺
[Zn(OH) ₄] ²⁻	dsp^2	平面正方形	外轨	顺

2. 已知:Fe 和 Ni 的原子序数分别为 26 和 28

物质	中心离子	配离子	古劫武力劫	顺磁或
	杂化类型	空间构型	内轨或外轨	反磁性
[Ni(CN) ₄] ²⁻	sp ³	正四面体	内轨	顺
[Fe(H ₂ O) ₆] ³⁺	d^2sp^3	正八面体	外轨	反
[Fe(CN) ₆] ⁴⁻	d^2sp^3	正八面体	内	反磁性

五、计算题

- 1. M: AgI Ag⁺+I⁻ (1) $K_{sp}^{\$}$ (AgI) = 8.3×10⁻¹⁷
- $Ag^{+} + 2CN^{-} \qquad [Ag(CN)_{2}]^{-} \qquad \qquad (2) \qquad \qquad K_{s}([Ag(CN)_{2}]^{-}) = 1.3 \times 10^{21}$
- (1) + (2) #: AgI + 2CN⁻ ≠ [Ag(CN)₂]⁻+I⁻ (3)

 $K_3 = K_{sp}^{\$} (AgI) \times K_s ([Ag(CN)_2]^{-}) = 1.08 \times 10^5$

设溶解的 AgI 摩尔数为 x

$$AgI + 2CN^{-} \rightleftharpoons [Ag(CN)_{2}]^{-} + \Gamma$$

平衡

$$\frac{(2x)^2}{(0.1-2x)} = 1.08 \times 10^5$$
 解得 x=4.99×10⁻²

2. 解: (1) 首先计算与[Zn(NH₃)₄]²⁺达到平衡的 Zn²⁺的浓度:

$$[Zn(NH_3)_4]^{2+} \rightleftharpoons Zn^{2+} + 4NH_3 \qquad \frac{[Zn^{2+}][NH_3]^4}{[Zn(NH_3)_4]} = \frac{1}{2.88 \times 10^9}$$

代入数据得: [Zn²⁺]=3.47×10⁻⁷ mol·L⁻¹

(2) 计算氨水与氯化铵溶液中[OH-]

$$NH_3 \cdot H_2O \rightleftharpoons NH_4^+ + OH^- \qquad \frac{[NH_4^+][OH^-]}{[NH_3]} = 1.8 \times 10^{-5} \qquad [OH^-] = 1.8 \times 10^{-5}$$

(3) 计算是否会生成氢氧化锌沉淀:

[Zn²⁺][OH]²=3.47×10⁻⁷×(1.8×10⁻⁵)²=1.12×10⁻¹⁶>
$$K_{sp}^{\$}$$
(Zn(OH)₂) = 1.2×10⁻¹⁷ 所以会生产氢氧化锌沉淀。

3. 解:为了不使 AgCl 沉淀析出,

[Ag⁺][Cl⁻] <
$$K_{sp}^{\$}$$
 (AgCl) = 1.8×10⁻¹⁰ [Ag⁺] < $\frac{1.8 \times 10^{-10}}{0.4}$ = 4.5×10⁻¹⁰

为了达到以上目的,应利用 KCN 对银离子进行络合反应:

$$Ag^+ + 2CN^- \rightleftharpoons [Ag(CN)_2]^-$$

$$\frac{1.6}{4.5 \times 10^{-10} \times x^2} = 1.3 \times 10^{21}$$
 解得: $x = 1.64 \times 10^{-6}$

考虑到形成络合物时消耗的氰化钾,其浓度应该不低于 1.6 mol·L-1

4. 解: (1) 已知 AgCl 沉淀恰好溶解,则有

$$[Ag^+][Cl^-] = (AgCl) = 1.8 \times 10^{-10} \qquad [Ag^+] = \ (1.8 \times 10^{-10}/0.1) \ = 1.8 \times 10^{-9}$$

(2) 计算保证[Ag+]等于 1.8×10-9 时, 氨水的最低浓度:

$$Ag^{+}+2NH_{3} \Rightarrow [Ag(NH_{3})_{2}]^{+}$$
 设氨水的最低浓度为 x ,
 $\frac{0.1}{1.8 \times 10^{-9} x^{2}} = 1.1 \times 10^{7}$ 计算得到 $x=2.24$.

加上消耗的 0.2 摩尔, 氨水的最低浓度应该是 2.42 mol·L-1

(3) $[Ag^+][Br^-]=1.8\times10^{-9}\times0.2=3.6\times10^{-10}>K_{sp}^{\$}(AgBr)=5.0\times10^{-13}$ 因此将有溴化银沉淀产生。

常见非金属元素及其化合物

非金属参考答案

一、选择题

1-5: BB

ACA 6-10: D CBBA 11-15: ADCDC 16-19: $AB(CO+PdCl_2+H_2O=Pd\downarrow$

+CO₂+2HCl)DA

二、填空题

- 1、 2Cl₂ + 2Ca(OH)₂ = CaCl₂ + Ca(ClO)₂ + 2H₂O,Ca(ClO)₂; 2、AsH₃,亮黑色砷镜
- 3、浓硝酸, 浓盐酸; 4、C, NaHCO₃, SiO₂, Na₂SiO₃, PbO, PbO, Pb₃O₄;
- 三、写出下列反应方程式
- 1. $SiO_2 + 4HF \rightarrow SiF_4 \uparrow + 2H_2O$ 2. $2S_2O_3^{2^-} + I_2 = S_4O_6^{2^-} + 2I^-$
- 3. $2Cl_2 + 2 Ca(OH)_2 = CaCl_2 + Ca(ClO)_2 + 2 H_2O$ 4. $PbS + 4H_2O_2 = PbSO_4 + 4H_2O$
- 5. $S_2O_3^{2^-} + 2H^+ = S \downarrow + SO_2 + H_2O$
- **6.** $S_2O_3^{2^-} + 2Ag^+ = Ag_2S_2O_3 Ag_2S_2O_3 + H_2O \rightarrow Ag_2S + H_2SO_4$
- 7. $2HClO_3 + I_2 = 2HIO_3 + Cl_2$
- 8. $5NO_2^- + 2MnO_4^- + 6H^+ = 5NO_3^- + Mn^{2+}$

- +3H₂O
- 9. $NH_3 \cdot H_2O + HNO_2 = NH_4NO_2 + H_2O; NH_4NO_2 = N_2 \uparrow + 2H_2O$
- **10.** $H_3AsO_4+2H^++2I^- \rightarrow H_3AsO_3+I_2+H_2O$
- 11. $As_2O_3+6NaOH\rightarrow 2Na_3AsO_3+3H_2O$
- **12.** Na₂B₄O₇+ CoO →Co(BO₂) ₂.2 NaBO₂(蓝色) Na₂B₄O₇+ MnO →Mn(BO₂) ₂.2 NaBO₂

常见金属元素及其化合物

11

金属参考答案

一、选择题

1-5: ADCCC 6-10: CDCAA 11-15: CDBBC 16-20: DDBDD

二、填空题

- 1、碱金属与液氨反应,导电性,溶液中含有大量的溶剂合离子和电子,顺磁性的
- 2、两, [Pb(OH)₄]²⁻, 醋, 硝 3、红, 铅丹, 1/3, PbO₂, 2/3, Pb(NO₃)₂;
- 4、分离, Zr 和 Hf; 5、O Si Al; Al Fe Ca K Na Mg Ti Mn; 硅酸盐
- 6. W, Hg, Cr, Cs, Cs, Os, Li, Ag, Pt, Au, Be, Cs, Au; 7. Cu, Zn; Cu, Sn, Zn; Cu, Ni, Zn;
- 8、HgNH₂Cl(白色)↓, [Hg(NH₃)₂Cl₂], [Hg(NH₃)₄]Cl₂, HgNH₂Cl(白色)↓, HgNH₂Cl(白色)↓, Hg↓, [Hg(NH₃)₄]Cl₂ + Hg↓
- 9、 Ba(ClO₂)₂和稀 H₂SO₄,4HClO₂ = 3ClO₂ + 1/2Cl₂ + 2H₂O

三、写出下列反应方程式

- 1. $Al(OH)_3 + 3H^+ = Al^{3+} + 3H_2O$ $Al(OH)_3 + NaOH = NaAlO_2 + 2H_2O$
- **2.** $Pb^{2+} + CrO_4^{2-} = Pb CrO_4 \downarrow$ **3.** $5PbO_2 + 4H^+ + 2Mn^{2+} = 2 MnO_4^- + 5Pb^{2+} + 2 H_2O$
- **4.** 2HgCl₂+SnCl₂ = SnCl₄+Hg₂Cl₂↓(白) Hg₂Cl₂+SnCl₂ = SnCl₄+2Hg↓(灰黑)
- 5. $2Mn^{2+} + 5BiO_3^- + 14H^+ = 2MnO_4^- + 5Bi^{3+} + 7H_2O_3^-$
- **6.** $2Mn^{2+}+S_2O_8^{2-}+8H_2O=2MnO_4^-+10SO_4^{2-}+16H^+$
- 7. $2 \text{ Cr}^{3+} + 3 \text{S}_2 \text{O}_8^{2-} + 7 \text{ H}_2 \text{O} = \text{Cr}_2 \text{O}_7^{2-} + 6 \text{S} \text{O}_4^{2-} + 14 \text{H}^+$
- **8.** $Cr_2O_7^{2^-} + 3H_2O_2 + 8H^+ = 2 Cr^{3+} + 3O_2 + 7 H_2O$ **9.** $MnO_2 + 4H^+ + 2Cl^- = Mn^{2+} + Cl_2\uparrow + 2H_2O$
- 10. 2MnO₄⁻(紫色)+5SO₃²⁻+6H⁺→2Mn²⁺(淡红色或无色)+5SO₄²⁻ +3H₂O 2MnO₄⁻ +5SO₃²⁻+H₂O→2MnO₂↓(棕色)+3SO₄²⁻+2OH⁻ 2MnO₄⁻ +SO₃²⁻+2OH⁻→2 MnO₄²⁻(绿色)+SO₄²⁻+H₂O
- 11. $SiO_2+4HF \rightarrow SiF_4\uparrow+2H_2O$
- 12. $2Cu^{2+} + 4I^{-} \rightarrow 2CuI \downarrow + I_{2}$ 13. $Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2} \downarrow 2$ $Fe(OH)_{2} \downarrow 4O_{2} \rightarrow 2Fe(OH)_{3} \downarrow 3$
- **14.** $2Fe^{3+}$ + Cu→ $2Fe^{2+}$ + $2Cu^{2+}$ **15.** Fe^{2+} + $2CN^-$ → $Fe(CN)_2$ ↓ $Fe(CN)_2$ + $4CN^-$ → $[Fe(CN)_6]^{4-}$

16. K++Fe²⁺+[Fe(CN)₆]³⁻→[KFe(CN)₆Fe] ↓ (滕氏蓝)

17. K++Fe³⁺+[Fe(CN)₆]⁴⁻→[KFe(CN)₆Fe] ↓ (普鲁士蓝)

18. $2Cu+O_2+H_2O+CO_2\rightarrow Cu(OH)_2CO_3$

19. $2Ag+O_2+2H_2S\rightarrow 2Ag_2S+2H_2O$

20. Au+ HNO₃+4HCl \rightarrow H[AuCl₄] + NO \uparrow +2H₂O

21. Cu+ 4HNO₃ (\Re) →Cu (NO₃)₃ +2 NO₂↑+2H₂O 3Cu+8HNO₃ (稀) → 3Cu (NO₃) $_3+2$ NO↑+2H₂O

22. $2AgNO_3 \rightarrow 2Ag+2 NO_2 \uparrow +O_2$

23. $2S_2O_3^{2-} + AgBr = [Ag(S_2O_3)_2]^{3-} + Br^{-}$

24. 2Hg₂(NO₃)₂+ 4NH₃+H₂O→HgO. NH₂. HgNO₃↓(白色)+2Hg(黑色)+3NH₄NO₃

25. Hg₂²⁺+ 2I[−]→Hg₂I₂↓ (浅绿色)

 $Hg_2I_2+2I^- \rightarrow [Hg_2I_4]^{2^-} + Hg \downarrow$

26. Hg^{2+} + $2I^- \rightarrow HgI_2 \downarrow$ (橘红色) $HgI_2 + 2I^- \rightarrow [HgI_4]^{2-}$ (无色)

27. $HgCl_2+ 2Hg \rightarrow Hg_2Cl_2$

28. Hg₂²⁺+ S²⁻→HgS↓+ Hg↓ 类似的还有:

 $Hg_2^{2+}+2OH^- \rightarrow HgO\downarrow + Hg\downarrow + H_2O \qquad Hg_2^{2+}+2NH_3 \rightarrow Hg(NH_2)Cl\downarrow + Hg\downarrow + NH_4Cl$

 $Hg_2^{2+}+2CN^- \rightarrow Hg(CN)_2\downarrow + Hg\downarrow Hg_2^{2+}+4I^- \rightarrow [HgI_4]^{2-}+Hg\downarrow$

